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Abstract
We consider a ‘quantum dot’ in the Coulomb blockade regime, subject to an
arbitrarily large source–drain voltage V . When V is small, quantum dots with
odd electron occupation display the Kondo effect, giving rise to enhanced
conductance. Here we investigate the regime where V is increased beyond
the Kondo temperature and the Kondo resonance splits into two components.
It is shown that interference between them results in spontaneous oscillations
of the current through the dot. The theory predicts the appearance of ‘Shapiro
steps’ in the current–voltage characteristics of an irradiated quantum dot; these
would constitute an experimental signature of the predicted effect.

Quantum dot devices [1] display very rich physics in and near equilibrium. In particular,
experiments [2] over the past few years have confirmed a decade-old theoretical prediction that
these systems exhibit the Kondo effect [3]: the low-temperature formation of a hybridization
resonance between the dot and the leads to which it is connected. This resonance is the result
of collective spin exchange processes between the leads and the dot, which dominate the low-
temperature physics below a certain scale (the ‘Kondo temperature’). The Kondo effect is
manifested as an enhancement of the dot’s conductance.

A bias voltage applied to a quantum dot modifies the electron energies in the leads, driving
a current through the dot. This offers a unique opportunity to study correlated electrons out
of equilibrium. Can new kinds of non-equilibrium collective phenomenon develop in driven
quantum systems? In the realm of classical physics, there are many instances of transitions to
new phases in response to a non-equilibrium driving force. An example is the Rayleigh–Bénard
instability, where a temperature difference causes the development of convective roll patterns
that spontaneously select their own spatial and temporal frequencies [4]. However, for a driven
quantum system to develop new collective behaviour, it must preserve its quantum mechanical
coherence. The issue of whether a bias voltage preserves the phase coherence of a quantum
dot is thus a matter of considerable concern.
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Figure 1. (a) A schematic depiction of an incoming electron wave A scattering off the quantum
dot into the same (B) and the opposite (B′) leads. Dephasing (indicated by wavy crosses) takes
place after the scattering event. (b) The mapping of the quantum dot problem to a one-dimensional
‘chiral’ model. Electrons and information travel from left to right. Dephasing of electrons at B and
B′ cannot affect the quantum dot.

In this letter we argue that electron flow through a quantum dot modifies, but does not
dephase the correlations of the dot. Central to our arguments is the observation that the physics
of a quantum dot can be mapped onto a one-dimensional problem [5], where the electrons
in each lead are represented by waves travelling in one direction along one-dimensional
conductors, arriving at the dot from the left and leaving it to the right (figure 1). This chiral
mapping is exact. Electrons scattering off the dot do not lose phase information until they
suffer subsequent inelastic collisions with other electrons and magnetic impurities in the leads,
which, in the chiral mapping picture, lie to the ‘right’ of the dot. Since information travels
only from left to right, the dephasing of an outgoing electron does not affect the spin it has
left behind, and thus a current of electrons through a quantum dot does not dephase the Kondo
effect, but acts as a coherent driving force.

This argument is employed to examine the possibility of dynamical instabilities in a
driven, yet fully coherent quantum dot. We present calculations which predict that, beyond a
critical bias voltage Vc, the current flowing through the quantum dot spontaneously acquires
an oscillatory component whose frequency is a non-linear function of the bias voltage.

The quantum dot system considered here consists essentially of three parts: the dot itself,
and the left and right leads, to which it is connected by weak tunnelling junctions. In the
Coulomb blockade regime, the occupation of the dot is fixed, and the only allowed processes
involve flipping the spin of the unpaired electron on the dot. In this simple picture, a dot
containing an odd number of electrons is a spin- 1

2 impurity. As the temperature is lowered,
spin fluctuations lead to the development of a sharp resonance peak in the interacting electron
density of states: the Abrikosov–Suhl (AS) resonance. This peak occurs at an energy h̄ω1, close
to the common Fermi energy of the leads, and has a width � ∼ TK , the Kondo temperature
(see figure 2(a)).

In the description which we shall use, the coherence associated with the Kondo effect is
encoded in terms of a time-dependent hybridization field 	̂β(t) ∼ ∑

kσ c
†
βkσ dσ between the

lead electrons and the electron on the dot. (The operator c
†
βkσ creates a lead electron with

momentum k and spin σ in lead β ∈ {L,R}; dσ annihilates a dot electron with spin σ .) Within
the mean-field formalism (see below), 	̂β is replaced by its mean value 	 ≡ 〈	̂β〉 = 	0eiω1t .

In the presence of a sufficiently large bias voltage V , the AS resonance splits into two
peaks [6], one near each Fermi level (see figure 2(b)). 	(t) therefore becomes a sum of two
terms, 	(t) = 	1eiω1t + 	2eiω2t , where ω1 and ω2 are the level positions of the two AS peaks.
Quantum interference between these two terms produces an oscillatory current at frequency
(ω1 −ω2) ∼ eV/h̄. We emphasize that this oscillating current originates as a response to a dc
bias: this is to be contrasted with the case where the driving voltage is itself time dependent [7].
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Figure 2. (a) Schematic picture of the equilibrium situation: a single Kondo resonance is formed
between the electron on the dot and electrons in both leads. (b) Quantum dot under a dc bias
V > Vc: Kondo resonances develop at each chemical potential, but each resonance still involves
the electrons from both leads. Interference between the resonances drives the oscillatory current.

(This figure is in colour only in the electronic version)

A natural choice for the description of a quantum dot coupled to two leads is the Anderson
model. We consider a generalized version of such a model, allowing for an asymmetry between
transmission and reflection amplitudes (see below). In the Coulomb blockade regime, charge
fluctuations are virtual, and may be integrated out [8] to obtain an effective spin-exchange
Hamiltonian:

H = H0 + HR + HT ;
H0 =

∑
βkσ

(εk − µβ)c
†
βkσ cβkσ ,

HR = − J

2N

∑
στ

[c†
Lσ dσ d

†
τ cLτ + (L → R)],

HT = −(1 − η)
J

2N

∑
στ

[c†
Rσ dσ d

†
τ cLτ + (L ↔ R)],

(1)

where c
†
βσ ≡ ∑

k c
†
βkσ . The spin variables σ, τ now take integer values from 1 to N , a

generalization which we discuss below. Here H0 controls the electrons in the leads, with
µL −µR ≡ eV , the source–drain voltage. The remaining parts of the Hamiltonian describe
the spin exchange processes which accompany electron reflection (HR) and transmission (HT )
at the dot.

A crucial ingredient is the asymmetry parameter η. When (1) is derived directly from
the Anderson model, one finds that η = 0; this reflects a symmetry between reflection and
transmission processes that will never be exactly realized in a physical quantum dot system [9].
(In the discussion here, we shall take the parameter η to be independent of the voltage across
the leads.) Moreover, it has been proposed [10] that, at voltages above the Kondo temperature,
the dot system develops a divergent susceptibility to perturbations of the form −λO†O, where
operator O is defined by O(t) ≡ ∑

στ (c
†
Lσσστ cRτ ) · S, where S is the impurity spin. The

inclusion of a small non-zero η represents the effect of such terms.
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Our analysis of the model (1) is based on the self-consistent determination of the
hybridization fields 	̂βσ (t) = c

†
βσ (t)dσ (t). In an actual physical system, the spin index

σ may take one of two values (↑ or ↓), but it is useful to consider a general case where
σ ∈ {1, . . . , N}. This is because, as N → ∞, the hybridization fields 	̂βσ (t) behave as
well defined semi-classical variables: 	̂β(t) → 1

N

∑
σ 〈c†

βσ (t)dσ (t)〉. The use of the large-N
approach deserves particular discussion. By making this choice we render the problem exactly
solvable, but in doing so, we exclude inelastic scattering processes and thus emphasize the
coherent aspects of the quantum dot physics. (Specifically, the lowest-order processes that
produce a lifetime for the d-fermion are of O(1/N), and therefore disappear in the N → ∞
limit.) The phase coherent physics of the N = 2 Kondo effect is captured by the large-
N limit [11]. Thus, if an applied voltage acts as a phase coherent driving force on the
quantum dot, we expect the large-N mean-field theory to correctly capture any collective
behaviour that develops at large voltage bias. Support for this approach is provided by
recent calculations [10], which show that the quantum dot system remains a non-perturbative
phenomenon at arbitrarily large voltages. However, the ultimate test of the procedure must
surely lie in experiment.

Replacing the hybridization fields by their expectation values in the large-N limit results
in the mean-field Hamiltonian

H = H0 +
∑
σ

[(V∗
L(t)c

†
Lσ dσ + d†

σ cLσVL(t)) + (L → R)] +
N |VL + VR|2
J (2 − η)

+
N |VL − VR|2

Jη
, (2)

where VL and VR are defined by( VL(t)

VR(t)

)
= 1

2

[
J J (1 − η)

J (1 − η) J

] (
	L(t)

	R(t)

)
. (3)

The amplitudes VL,R(t) must be self-consistently determined from the expectation values
	L,R(t) at finite voltage V .

Our analysis uses the Schwinger–Keldysh formalism [12], and from the practical point of
view this requires an ansatz for the form of the hybridization fields Vβ(t). In the present work,
two ansätze are investigated: a two-frequency ansatz (‘2F’),

V ≡
( VL

VR

)
= Vo(ξ+e−iωot + ξ−eiωot ), (4)

and a one-frequency ansatz (‘1F’), where the second term on the RHS of (4) is absent. The
1F solutions correspond to states with a single AS resonance. The 2F solutions correspond to
states in which the resonance has been split into two components at energies ±ωo, giving rise
to an oscillatory current.

We have supplemented this approach with detailed numerical simulations which employ
the Heisenberg equations of motion to time-evolve the one-particle density matrix of the
system and keep track, self-consistently, of the averages 〈c†

βσ (t)dσ (t)〉 and 〈c†
ασ (t)cβσ (t)〉,

which together describe the state of the whole system. The initial state is taken to be a ‘high-
temperature’ state, i.e. one with extremely small hybridization between the dot and the leads.
The fields Vβ(t) are updated at each time step to ensure self-consistency. The quantity of
interest is the physical current through the dot, I (t) = 2J (1 − η) Im (	R(t)	

∗
L(t)).

Consider first the 1F solutions. These are static solutions since, with only one AS
resonance present, there is no possibility of interference: the current through the dot is hence
time independent. As long as η �= 0, static solutions exist for all values of V . As V is increased
from zero, the level position ωo = 0 does not change, i.e. the application of a small bias neither
splits nor shifts the AS peak. The width of the peak, �, decreases sharply as one increases the
voltage (figure 3(b)). AtV = Vc ≈ 2TK/e, the single static solution at frequencyωo bifurcates,
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Figure 3. (a) The unstable frequency ωo(V ) governing the splitting of the AS resonance, in the
case η ≈ 0.37. (b) The width �(V ) of the AS resonance for the case η ≈ 0.37.

and for V > Vc one finds two degenerate static solutions, with frequencies ±ωo, where ωo =
(eV/2h̄)!(eV/2kBTK) (figure 3(a)). At large voltages, !(x) → 1; thus these degenerate
solutions represent an AS resonance, of width �(η, V ), attached to the left or right lead.

When V < Vc, the numerical simulations support these results; however, for V > Vc,
they indicate that the static solutions are unstable to the emergence of a 2F solution (4),
consisting of components at both frequencies ±ωo. Quantum interference between these two
AS resonances contributes an oscillating part to the current I (t) (figure 4). The oscillations
are monochromatic, and their frequency is indeed 2ωo (figure 3(a)).

For the oscillating current I (t), one may identify Imax (the maximum instantaneous current)
and Imin (the minimum); one may thence define the dc and ac parts: Idc ≡ 1

2 (Imin + Imax);
Iac ≡ 1

2 (Imax − Imin). These are plotted in figure 5 as functions of V . The appearance of
alternating and direct components to the current is a manifestation of a two-frequency solution,
for if the hybridization fields have a two-frequency form	R(t) = 	∗

L(−t) = 	+e−iωot +	∗
−eiωot ,

then the current I (t) = 2J (1 − η) Im (	R(t)	
∗
L(t)) takes the form

I

2J (1 − η)
= Im [	2

+ + 	2
−] + 2|	+	−| sin(2ωot + φ), (5)

where we have written 	+	− = |	+	−|e−iφ . Phase coherence between 	+ and 	− is needed
to stabilize the phase φ inside the oscillatory term.

At small V , the I–V curve is linear, and then peaks at eV ∼ kBTK . The behaviour of the
differential conductance G(V ) ≡ dIdc/dV beyond the peak is novel, as it is affected by the
sharp transition into the new regime where direct and alternating currents occur together. As
the voltage is increased from zero, G(V ) changes sign at eV ∼ kBTK , exhibits a discontinuity
at V = Vc and eventually approaches zero from below.

We conclude with a brief discussion on the detection of this proposed oscillatory
phenomenon. In close analogy to the Josephson effect, we expect that when the quantum
dot is exposed to radiation, the current–voltage profile will develop Shapiro steps [13] when
the oscillatory frequency is commensurate with the frequency of the incident radiation. We
give here a brief derivation of the expected effect.

A modulation in the bias voltage V (t) = V0 + V1 sin ωint will lead to a modulation in
the separation of the Kondo resonances on opposite leads, given approximately by 2ω(t) =
2ωo + (eV1/2h̄) cos ωint . Since this separation determines the rate of change of the oscillatory
current’s phase, the current in the irradiated dot will take the form
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Figure 4. Tunnelling current through the dot, I (t), as a function of time, for dc voltage V = 3.5 TK .
(Here η ≈ 0.46, and time is measured in units of the Kondo time, τK ≡ h̄/kBTK .)
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Figure 5. The direct and alternating parts of the current through the dot (Idc and Iac) as a function
of voltage, V , in the case η ≈ 0.46.
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I (t) = Idc + Iac sin

(
2

∫ t

ω(t ′) dt ′
)

= Idc + Iac sin

(
2ωot +

eV1

h̄ωin
sin(ωint) + φ

)
. (6)

This function contains new Fourier components at frequencies 2ωo ± nωin, where n is an
integer, so that when 2ωo is a multiple of ωin, additional contributions appear in the direct
current. In a current-biased quantum dot, we expect this rectification effect to lead to Shapiro
steps in the current at voltages where ωin is commensurate with the separation of the Kondo
resonances 2ωo(V ). Experimentally, these steps should be visible in the range TK < V0 < U ,
where U is the charging energy of the dot. Observation of such Shapiro steps would constitute
direct evidence of phase coherent current oscillations in the dc-biased quantum dot.
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